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Introduction
Glaucoma is a disease that is asymptomatic until advanced 
stages, in this paper we use Gabor filters for 2D-image analysis 
have been extensively used as convolution filters, [1,2] motivated 
by search results in Biological vision systems [3] to detect this 
disease and screening it until total blindness. The 2D-Gabor 
filters occupy an irreducible volume in a four-dimensional 
hyper-space of information whose axes can be interpreted as 2D 
visual space, Orientation and spatial frequency. [4] Even if the 
properties of the 2D-Gabor filters (e.g. orientation selectivity 
and the compromise between spatial and frequency resolutions) 
correspond to the first psychophysical and physiological 
results, they were finally confirmed for the modeling of simple 
receptive fields thanks to a series of 2D experiments on simple 
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Abstract
Background: The detection of edge of the cup (excavation), disc, and the optic nerves head 
which converges into the center of the excavation in the papilla of the retina is a crucial 
procedure in computer vision object detection processing and analysis. Purpose: We propose 
a method and approach for cup and disc detection based on 2-D Gabor filter with the addition 
of some constraints. This paper approves that edge magnitude and edge phase are useful for 
extracting the disc and the cup and to overcome the lack contrast between the cup-disc in order 
to discriminate one from the other and to extract the different optical vessels along several 
directions theta. These methods are based on space image and phase image after searching the 
favorable parameters (Scale, sigma, a & b, r ...) to properly adjust the results of the application 
of kernels Gabor on the fundus image of the retina to calculate the magnitude image and the 
phase image which each bring additional information on the excavation of the of the optic 
nerve head ONH to help to early glaucoma disease screening. Results: The proposed method 
was applied on several retinal images issued from a set of images of Tunisian glaucomatous 
database. A total of 60 images were used. For an input image, several features were determined, 
such as edge of the disc, edge of the cup, boundaries of the papilla and calculate magnitude 
image and phase’s image. Fitting sigma, scale, spatial frequency F0 and (a, b) parameters were 
adjusted to aggregate the Gaussian kernel function modulated by a sinusoidal plane wave, 
ωr (x, y) and C (x, y) a complex sinusoid, respectively. The Signal-to-Noise Ratio SNR and the 
mean square error MSE were used to identify the optimum fitting parameters instigated in the 
Gabor function and convolved with the retinal image to detect the magnitude and phase image 
over different orientations for the segmentation of cup and the disc and the optic nerve head 
ONH. Conclusions: 2D Gabor filters are analyzed and the apply a set of Gabor filter to 2D- 
fundus image of retina is efficacious to detect the optic nerve head ONH and the Gabor filter 
banks for texture classification of the papilla and pattern analysis of the cup and the Disc. The 
results given in this paper can be useful by an ophthalmologist to diagnosis a glaucomatous 
case. Segmentation of the cup and the disc through the bank Gabor filter proved functional for 
glaucomatous diagnosis and screening the pathology.
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cells of human beings [4] and cats. [5-7] However, not all current 
psychophysical and physiological researchers agree with this 
model. [8]

2D-Gabor filters were considered an important instrument for 
a variety of image pattern processing and recognition problems 
(e.g., image enhancement, [9] Compression, [10] texture analysis, 

[11] edge and line detection, [12] biometrics Recognition, [13] object 
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detection [14] and segmentation [15]. In order to maximize the 
performance of the systems in terms of accuracy, researchers 
used optimization algorithms to adjust the Gabor parameters 
[16] and to increase the filtering speed; they proposed orientable 
Gabor type filters, [17] a Gabor wavelet [18] and a Gabor filtering 
system. [19]

To answer the current research, 2D Gabor filters are analyzed. 
The results [Figure 1] given in this paper are the segmentation 
and extraction of patterns:

Figure 1: (a) The real part and the imaginary part of a Gabor filter. (b) 
The real and imaginary parts of a complex sinusoid. (c) The response 
of the convolution of the retinal image and the real imaginary parts of a 
complex Gabor function in space domain (Gabor magnitude response). 
(d) Gabor phase responses. The images are ‹1000 × 1054 × 3 unit 8 › 
pixels. The parameters are as follows: x0=y0=0, a=1/50 pixels, b= 1/40 
pixels, θ=(-π/8; π/8), F0=√2/80 cycles/pixel, ω0=45 degrees, φ=0 degree.

Papilla, disc, cup and vessel’s detection are along several 
orientations. A 2D Gabor filter in a spatial domain is defined 
bellow and the results of the convolution of the Gabor filter 
bank with the input imaging shows its robustness of segmenting 
the papilla and separating the cup from the disc thus visualizing 
the optical nerves (vessels) that converge towards the head 
of the optic nerve following different orientations theta [20] to 
distinguish those that blow from necrosis to increase intraocular 
pression IOP and which is a factor generates glaucoma and its 
early screening using machine learning can help avoid total 
blindness before this pathology reaches an advanced stage to 
reduce glaucoma severity and vision loss.

Segmentation of the optic nerve head

Several recent theoretical models for human spatial vision 
postulate that cortical receptive fields act to minimize 
simultaneously the product of the standard deviation of the 
sensitivities to position (Δx) and to spatial frequency (Δω) [21] 
in accord with the uncertainty principle from Fourier analysis.

The receptive-field functions resulting from these approach 
one-dimensional or two-dimensional Gabor elementary 
functions have been shown by others to fit measured receptive 
fields adequately in some species. [22] However, only complex-
valued Gabor functions minimize this product, and these cannot 
be fitted to single-cell receptive fields. We point out that the 
derivations of others have an implied metric or measure of 
positional and spatial-frequency uncertainties and that there 
is an infinitely large class of such metrics, many of which 
yield other receptive-field functions that are quite plausible 
biophysically. We review neurophysiological measurements of 

others and analyze psychophysical masking data and find that in 
many cases receptive-field functions other than Gabor functions 
fit better. We conclude that there are insufficient theoretical 
demonstrations and experimental data to favor Gabor functions 
over any of a number of other plausible receptive-field functions.

A novel peripheral processing method is proposed to segment 
total field strain distributions from interferometric deformation 
patterns by use of Gabor filters. This novel strategy is 
specifically proposed for strain measurement with a Gabor filter 
used as a set of wavelets. [23] To increase computational speed 
as well as for selection of contour intervals, judicious design of 
the filter bank, based on the border pattern and the necessities of 
the user, is crucial in this methodology. A filter design strategy 
is developed and, based on the proposed filter design scheme; 
properly designed filter banks are generated and applied for 
strain contouring in low-strain and strain concentration regions. 
This scheme allows one to measure engineering strains within 
regions of interest and hence provides the design engineer great 
flexibility of monitoring, testing, or analysis. [24]

Texture segmentation involves subdividing an image into 
differently textured regions. Many texture segmentation 
schemes are based on a filter-bank model, where the filters, 
called Gabor filters, are derived from Gabor elementary 
functions. The aim is to transform texture differences into 
detectable filter-output discontinuities at texture boundaries. 
By locating these discontinuities, one can segment the image 
into differently textured regions. Distinct discontinuities 
occur, however, only if the Gabor filter parameters are suitably 
chosen. Some previous analysis has shown how to design filters 
for discriminating simple textures. Manipulative filters by the 
optimum parameters; for more general natural textures, though, 
has largely been done. We have devised a more rigorously based 
method for designing Gabor filters by the fitting parameters 
who controlled the convolution of the kernel Gabor filters with 
the retinal image to obtain finest texture describe all schemes 
(vessels, papilla, disc, cup and the optic nerve head ONH) 
confined in this regions. It assumes that an image contains two 
different textures and that prototype samples of the textures 
are given a priori. We claim that Gabor filter outputs can be 
modeled as Rician random variables [25] and develop a decision-
theoretic algorithm for selecting optimal filter parameters. 
To improve segmentations for difficult texture pairs, we also 
propose a multiple-filter segmentation scheme, motivated by the 
Rician model. [26] Experimental results indicate that our method 
is superior to previous methods in providing useful Gabor filters 
for a wide range of texture pairs.

Methods
Gabor filter banks for texture classification

In image processing, a Gabor filter is a linear filter used for 
texture analysis, which means that it basically analyses whether 
there is any specific frequency content in the image in specific 
directions in a localized region around the point or region of 
analysis. Frequency and orientation representations of Gabor 
filters are similar to those of the human visual system, [27] and 
they have been found to be particularly appropriate for texture 



50 Annals of  Medical and Health Sciences Research | January 2018 | Vol 8 | Special Issue 1 |

Belgacem R, et al.: Applying a Set of Gabor Filter to 2D-Retinal Fundus Image to Detect the Optic Nerve Head (ONH)

representation and discrimination. [28-30] In the spatial domain, a 
2D Gabor filter is a Gaussian kernel function modulated by a 
sinusoidal plane wave [Figure 2].

Figure 2: (a) and (b):  The real part and the imaginary part of a complex 
Gabor function in space domain. The images are ‹1000 × 1054 × 3 unit 8 
› pixels. The parameters are as follows: x0=y0=0, a=1/50 pixels, b= 1/40 
pixels, θ=-π/4, F0=√2/80 cycles/pixel, ω0=45 degrees, φ=0 degree.

In the next paragraph, we will see how to classify textures based 
on Gabor filter banks. Frequency and orientation representations 
of the Gabor filter are similar to those of the human visual 
system.

The images [Figure 3] are filtered using the real and imaginary 
parts of various different Gabor filter kernels [Figure 4].

Figure 3: The real part and the imaginary part of a complex Gabor 
function in space domain. The images are ‹1000 × 1054 × 3 units 8 › 
pixels. Input retinal image of glaucomatous case used to extract the optic 
cup (OC) and the optic disc (OD) by applying a set of Gabor filter bank to 
this image. Resize factor is 0.5

 

Figure 4: The real part and the imaginary part of a complex Gabor 
function in space domain for different orientations θ. The images are 
‹513 × 961 × 3 unit 8 › pixels.

The mean and variance of the filtered images are then used as 
features for classification, which is based on the least squared 
error for simplicity.

The Spatial (2-D) Gabor filter

Here is the formula of a complex Gabor function in space 
domain used to generate the Gabor filter banks over different 
frequency and orientation representations: [31,32] 

g(x,y)= c(x,y).wr (x,y)                                                                         (1)

where c (x, y) is a complex sinusoid, known as the carrier, 
and ωr(x,y) is a 2-D Gaussian-shaped function, known as the 
envelope.

The complex sinusoid carrier

The complex sinusoid is defined as follows,

c(x,y) = exp (j(2π(u0 x + v0y)+φ)                                                 (2)

where (u0, v0) and φ define the spatial frequency and the phase 
of the sinusoid respectively.

We can think of this sinusoid as two separate real functions, 
conveniently allocated in the real and imaginary part of a 
complex function [Figure 5].

Figure 5: The real part and the imaginary part of a complex Gabor 
function in space domain for different orientations θ. The images are 
‹513 × 961 × 3 unit 8 › pixels.

The real part and the imaginary part of this sinusoid are

Re (c(x, y)) = cos (2π(u0 x + v0y)+φ)                                                       (3)

Im (c(x, y)) = sin (2π(u0 x + v0y)+φ)                                               (4)

The parameters u0 and v0 define the spatial frequency of the 
sinusoid in Cartesian Coordinates. [33] This spatial frequency 
can also be expressed in polar coordinates as magnitude F0 and 
direction ω0:

2 2
0 0 0F u v= +                                                                                 (5)

1 0tan0 0
vw
u

 −=   
 

                                                                              (6)

i.e.
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u0=F0.cosω0                                                                               (7)

v0=F0.sinω0                                                                                         (8)

Using this representation, the complex sinusoid is:

c(x,y) = exp (j(2π F0 (x cos ω0 +y sin ω0)+φ)                               (9)

The Gaussian envelope

The Gaussian envelope looks as follows:

ωr = S exp (-π (a2 (x - x0)r 
2 + b2 (y- y0)r 

2)                                     (10)

where (x0, y0) is the peak of the function, ‘’a ‘’ and ‘’b ‘’ are 
scaling parameters of the Gaussian where the Gaussian gets 
smaller in the space domain, if ‘’a’’ and ‘’b’’ get larger. [28] The 
r subscript stands for a rotation operation such that

(x - x0)r = (x - x0) cosθ + (y- y0)r sinθ                                         (11)

(y- y0)r = - (x - x0) sinθ + (y- y0)r cosθ                                            (12)

This rotation is clockwise, the inverse of the counterclockwise 
rotation of the ellipse [Figures 6 and 7].

 

Figure 6: Segmentation results, magnitude image, using the Gabor 
function convoluted with the input retinal image through different 
orientations θ.

Figure 7: Segmentation results, image’s phase, using the space of the 
phase a tan (θ) of the function’s Gabor convoluted with the input retinal 
image.

The complex Gabor function

The complex Gabor function is defined by the following 9 
parameters called degrees of freedom in the 2D filters Gabor:

• S: Scales the magnitude of the Gaussian envelope.

• (a, b): Scale the two axis of the Gaussian envelope and control 
the form of the Gaussian function.

• θ: Rotation angle of the Gaussian envelope.

• (x0, y0): Location of the peak of the Gaussian envelope and the 
center of the filter in the spatial domain.

• (u0, v0): Spatial frequencies of the sinusoid carrier in Cartesian 
coordinates.

It can also be expressed in polar coordinates as (F0, ω0).

• φ: Phase of the sinusoid carrier.

Each complex Gabor consists of two functions in quadrature 
(out of phase by 90 degrees), conveniently located in the real 
and imaginary parts of a complex function. [34,35]

Now we have the complex Gabor function in space domain 
[Figure 4]:

g (x,y) = S exp (-π (a2 (x - x0)r 
2 + b2 (y- y0)r 

2). exp (j(2π(u0 x + v0y
)+φ)                                                                                          (13)

Or in polar coordinates,

g x,y) = S exp (-π (a2 (x - x0)r 
2 + b2 (y- y0)r 

2). exp (j(2π F0 (x cos 
ω0 +y sin ω0)+φ)                                                                           (14)

SNR and MSE reprocessed to swell the appropriate 
parameters involved in the Gabor function to calcu-
late the optimum responses of the magnitudes and 
phases filter Gabor bank 

SNR is a measure independent of the type of noise that we 
are analyzing, SNR is an important parameter in decide the 
performance of the applicator of the filter Gabor bank over 
different parameters but the significance and usability of the 
parameter is very dependent of the type of noise. SNR is useful 
in random and uniformly distributed noise (like Gaussian), but 
in images with other nonlinear noises (like degradation between 
a threshold or degradation in a specific area and not the whole 
image) could give bad results. 

After processing it with an adaptive median filter h 5 × 5 = 0.04 × I5 
× 5 [Figure 8], the final image has a signal to noise ratio since again 
we can compare it to the Original image in the same way. 

As per Figures 8-11, we can:

• Calculate the Psignal as the mean of pixel values.

• Calculate the Pnoise and the standard deviation or error value of 
the pixel values.

• Take the ratio or you may use SNR=10 log10 (Psignal/Pnoise) to 
express the result in decibel.



52 Annals of  Medical and Health Sciences Research | January 2018 | Vol 8 | Special Issue 1 |

Belgacem R, et al.: Applying a Set of Gabor Filter to 2D-Retinal Fundus Image to Detect the Optic Nerve Head (ONH)

 

Figure 8: (a) Original image. (b), (c), (d), (e), (f), (g) and (h) Magnitude 
image calculated and segmentation results over different spatial 
frequency F0 to find the fitting F0. (b) F0=0.000177 cycles/pixel, (c) 
F0=0.00177 cycles/pixel, (d) F0=0.0177 cycles/pixel, (e) F0=0.177 cycles/
pixel, (f) F0=1.77 cycles/pixel, (g) F0=10.77 cycles/pixel and (h) F0=17.7 
cycles/pixel.

Figure 9: (a) Original image. (b), (c), (d), (e), (f), (g) and (h) Phase image 
calculated and segmentation results over different spatial frequency F0 
to find the fitting F0. (b) F0=0.000177 cycles/pixel, (c) F0=0.00177 cycles/
pixel, (d) F0=0.0177 cycles/pixel, (e) F0=0.177 cycles/pixel, (f) F0=1.77 
cycles/pixel, (g) F0=10.77 cycles/pixel and (h) F0=17.7 cycles/pixel.

Figure 10: (a) Original image. (b), (c), (d), (e), (f), (g) and (h) The real 
and imaginary parts of a complex Gabor function in space domain for 
one orientation θ=45° over different spatial frequency F0 to find the 
fitting F0. (b) F0=0.000177 cycles/pixel, (c) F0=0.00177 cycles/pixel, (d) 
F0=0.0177 cycles/pixel, (e) F0=0.177 cycles/pixel, (f) F0=1.77 cycles/
pixel, (g) F0=10.77 cycles/pixel and (h) F0=17.7 cycles/pixel.

Figure 11: (a) Original image. (b), (c), (d), (e), (f), (g) and (h) The real 
and imaginary parts of a complex Gabor function in space domain 
for one orientation θ=45° and one scale S=20 over different spatial 

frequency F0. (b) F0=0.000177 cycles/pixel, (c) F0=0.00177 cycles/pixel, 
(d) F0=0.0177 cycles/pixel, (e) F0=0.177 cycles/pixel, (f) F0=1.77 cycles/
pixel, (g) F0=10.77 cycles/pixel and (h) F0=17.7 cycles/pixel.

As per Figures 12-17,

Figure 12: (a), (b), (c), (d), (e), (f), (g) and (h) Magnitude images 
responses and segmentation results over different scale factor S to fix 
the fitting S. (a) S=0.005, (b) S=4, (c) S=5, (d) S=10, (e) S=15, (f) S=20, 
(g) S=25 and (h) S=50.

Figure 13: (a), (b), (c), (d), (e), (f), (g) and (h) Phase images responses 
and segmentation results over different scale factor S to fix the fitting S. 
(a) S=0.005, (b) S=4, (c) S=5, (d) S=10, (e) S=15, (f) S=20, (g) S=25 
and (h) S=50.

Figure 14: (a), (b), (c), (d), (e), (f), (g) and (h) Real and imaginary parts 
responses of Gabor function over different scale factor S, F=0.0177 
cycles/pixel and θ=π /4. (a) S=0.005, (b) S=4, (c) S=5, (d) S=10, (e) 
S=15, (f) S=20, (g) S=25 and (h) S=50.
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Figure 15: (a), (b), (c), (d), (e), (f), (g) and (h) Real and imaginary parts 
responses of complex Gabor function over different scale factor S, 
F=0.0177 cycles/pixel and θ=π /4. (a) S=0.005, (b) S=4, (c) S=5, (d) 
S=10, (e) S=15, (f) S=20, (g) S=25 and (h) S=50.

Figure 16: (a), (b) and (d) Two representations of Real and imaginary 
parts responses of Gabor function over different (a, b) factors, S=20, 
F0=0.0177cycles/pixel and θ=- π /4. (a) (a, b)=(1/20,1/10), (b) (a, 
b)=(1/50,1/40), (c) (a, b)=(1/100,1/80), (d) (a, b)=(1/150,1/140).

Figure 17: (A). (a), (b) and (d) Magnitude images responses and 
segmentation results function over different values of parameters (a, 
b) and a scale factor S=20, F0=0.00177cycles/pixel and θ=- π /4. (B). 
(a), (b) and (d) Phase images responses and segmentation results 
function over different values of parameters (a, b) and a scale factor 
S=20, F0=0.00177cycles/pixel and θ=- π /4. (a) (a, b)=(1/20,1/10), (b) (a, 
b)=(1/50,1/40), (c) (a, b)=(1/100,1/80), (d) (a, b)=(1/150,1/140).

Figure 18: The signal-to-noise ratio increases as the applicator of a filter 
h (5 × 5) on the original image I0. Increases SNR more pattern is visible 
in the calculate magnitude image where F0=0.0177cycles/pixel and θ=- 
π /4.

PSNR = 10. log10 (MAXI 
2/MSE )                                                (15)

= 20. log10 (MAXI/√MSE)                                                      (16)

= 20. log10 (MAXI ) – 10. log10 (MSE)                                         (17)

Where MAXI = 255 pixels.

And 

( ) ( )1 2, ,1 1
N NMSE I i j I i ji iMXN

 ′∑= −∑= =   
                                    (18)

We obtain the results recuperated in Tables 1 and 2.

Table 1: Calculated of PSNR and MSE over magnitude images 
responses and phase images responses, respectively, to fix 
the fitting output responses Ir to use far along for estimated the 
appropriate parameters: Fo, Scale S and (a, b). For each responses: 
S = 0.05 ;  F0 = 0.0177 Cycles/Pixel and Theta = - 45 degree.

Magnitude 
image 
responses

 
I rep 

 ho =3*3 
replicate

Ir = Irep* 
ho

 h1 = 3*3

Ir = Irep* 
h1

 h2 = 5*5

Ir = Irep* 
h2

Signal‑to‑noise 
ratio 

PSNR 
(dB) 7.2054 7.2543 7.2963 7.3747

Mean square 
error MSE 111.2420 110.6174 110.0840 109.0950

Phase image 
responses

 
I pha 

 ho =3*3 
replicate

Ir = Ipha* 
ho

 h1 = 3*3

Ir = Ipha* 
h1

 h2 = 5*5

Ir = Ipha* 
h2

Signal‑to‑noise 
ratio 

PSNR 
(dB) 8.5368 9.7791 9.8068 10.6025

Mean square 
error MSE 95.43331 82.39044 82.12810 74.64429

Table 2: Estimated the appropriate parameters: F0, Scale S and (a, 
b) through the optimum values of PSNR and MSE.

Measure of MSE & PSNR for Magnitude Image 
responses for Scale S = 20, (a, b) = (1/ 150,1/ 
140) and over different values of spatial 
frequency F0.

F0 (cycles/Pixel) 0 ,00177 0.0177 0.177 1.770
MSE 110.6930 108.7843 107.2061 100.6729
PSNR (dB)  7.2484 7.3995 7.4236 7.8308

Measure of MSE & PSNR for Phase Image 
responses for Scale S = 20, (a, b) = ( 1/ 150,1/ 
140) and over different values of spatial 
frequency F0.

F0 (cycles/Pixel) 0.00177 0.0177 0.177 1.770
MSE 58.4724 66.9133 57.7775 110.69
PSNR (dB) 11.5488 11.4832 11.4135 7.2484

Measure of MSE & PSNR for Magnitude Image 
responses for a Scale S = 20, over different 
values of parameters (a, b) and a fix spatial 
frequency F0 = 0.0177 cycles/pixel

(a, b) pixels 1/20, 1/10 1/50, 1/40 1/100, 1/80 1/150, 1/140
MSE 109.9098 110.1823 109.7106 108.7843
PSNR (dB) 7.2759 7.2886 7.3258 7.3995

Measure of MSE & PSNR for Phase Image 
responses for a Scale S = 20, over different 
values of parameters (a, b) and a fix spatial 
frequency F0 = 0.0177 cycles/pixel.

(a, b) pixels 1/20, 1/10 1/50, 1/40 1/100, 1/80 1/150, 1/140
MSE 58.6291 59.1174 61.6942 66.9133
PSNR (dB) 12.2781 11.9870 11.9784 11.4832

Measure of MSE & PSNR for Magnitude Image 
responses for different Scale S, parameters (a, 
b) are fixed at (1/150, 1/140) and a fix spatial 
frequency F0 = 0.0177 cycles/pixel. Θ = - 45°

Scale S 5 10 20 50
MSE 109.7515 109.6590 108.7843 110.1909
PSNR (dB)  7.3226 7.3299 7.3995 7.2789

Measure of MSE & PSNR for Phase Image 
responses for different Scale S, parameters (a, 
b) are fixed at (1/150, 1/140) and a fix spatial 
frequency F0 = 0.0177 cycles/pixel. Θ = - 45°

Scale S 5 10 20 50
MSE 78.8202 75.5873 66.9133 59.3325
PSNR (dB) 10.1980 10.4934 11.4832 10.9834
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If the estimation is too high, noise may not be properly removed 
and some artifacts generated. For example, a noisy background 
may lead to the appearance of insignificant objects with certain 
structure in the restored image. See the following example 
[Figure 18].

Figure 18: The signal-to-noise ratio increases as the applicator of a filter 
h (5 × 5) on the original image I0. Increases SNR more pattern is visible 
in the calculate magnitude image where F0=0.0177cycles/pixel and θ=- 
π /4.

Accomplishment the variation of the curves to deter-
minate the fitting parameters F0, S and (a, b)

In order to extract the parameters, appropriate for use in the 
kernel functions of Gabor filters, the values given in Table 2 
were plotted the variation curves of PSNR as functions of F0, 
S, and (a, b) respectively exploited in the magnitude image 
response and the phase image response [Figures 19-21] and 
those of variations of MSE as a function of F0, S, and (a, b) 
[Figures 22 and 23].

Figure 19: Exploit of the variation of PSNR and MSE over different value 
of parameter  ‘a’ to determine the appropriate value.

Figure 20: Exploit of the curve PSNR=f(Scale) to find the fitting value of 
the scale S used in the magnitude image response; S=20.

Figure 21: Exploit of the curve psnr=f(Scale) to find the fitting value of 
the scale S used in the phase image response; S=[20,25].

Figure 22: Exploit of the curve MSE=f(Scale) to find the fitting value of 
the scale S used in the magnitude image response; S=20.

Figure 23: Exploit of the curve MSE=f(Scale) to find the fitting value of the 
scale S where MSE is min and used in the phase image response; S=20.

The intersection of the two curves is as follows:

PSNR = f (F0, S, (a, b)) and MSE = f (F0, S, (a, b)) give the 
appropriate values of the parameters which decreases the mean 
square error and increases the signal-to-noise ratio so the two 
responses of magnitude and phase [Figures 24 and 25] after 
having integrated these parameters in the kernel functions of the 
Gabor filters. [36] [Figures 26-29].

Figure 24: (a), (b) and (d) Magnitude images responses over different 
values of parameters (a, b) and a scale factor S=20, F0=0.0177cycles/
pixel and θ=- π /4. (b)  Magnitude images response corresponding to the 
appropriate parameters (a, b)=(1/50,1/40).

Figure 25: (a), (b) and (d) Phase images responses over different values 
of parameters (a, b) and a scale factor S=20, F0=0.0177cycles/pixel and 
θ=- π /4. (b)  Phase images response corresponding to the appropriate 
parameters (a, b)=(1/50,1/40).
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Figure 26: (a) and (b) represented the evolution of psnr and mse over 
different value of ‘’ a ‘’ into kernel image response.

Figure 27: The intersection of the two curves psnr=f(a) and mse=f(a) to 
get the fitting value of a=1/50.

 

Figure 28: (a) and (b) represented the evolution of psnr and mse over 
different value of ‘’a’’ into phase image response.

Figure 29: The intersection of the two curves PSNR=f(a) and mse=f(a) 
to get the fitting value off a=1/50 into phase image response.

Experimental results

We apply a set of Gabor filter [Figures 30 and 31] to 2D-fundus 
image of retina [Figure 3].

for texture segmentation and to detect the optic nerve head 

(cup-disc) in order to demonstrate its performance to separate 
the two regions cup and disc since of the insignificant variance 
in contrast among the two regions located in the papilla and 
to separate well the nerves of the retina oriented in the same 
direction and the nerves converges to cup along different 
orientations and frequency. We start by a total of 8 Gabor filters 
in each case  [Figure 32]. 

 

Figure 30: (a), (b) and (d) Real and imaginary parts responses 
of a complex Gabor function over different (a, b) factors, S=20, 
F0=0.0177cycles/pixel and θ=- π /4. (a) (a, b)=(1/20,1/10), (b) (a, 
b)=(1/50,1/40), (c) (a, b)=(1/100,1/80), (d) (a, b)=(1/150,1/140).

Figure 31: (a), (b) and (d) Real and imaginary parts responses 
of a complex Gabor function over different (a, b) factors, S=20, 
F0=0.0177cycles/pixel and θ=- π /4. (a) (a, b)=(1/20,1/10), (b) (a, 
b)=(1/50,1/40), (c) (a, b)=(1/100,1/80), (d) (a, b)=(1/150,1/140).

Figure 32: Response of 8 Gabor filters bank along 2 orientations π/8 
and – π/8 for F0=[0.0177, 0.02] cycles/pixel and S=[20,25].

Each filter is regulated to one of the four orientations and to 
one of the five highest radial frequencies. Two-category 
segmentation obtained [Figures 33 and 34] using a total of 8 
Gabor filters tuned to fitting parameters previously searched and 
fixed in the equation which represents the kernel of Gabor filter 
function.
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Figure 33: Segmentation obtained into magnitude image response using 
a total of 8 Gabor filters tuned to fitting parameters previously searched.

Results
This paper presents a texture segmentation procedure stimulated 
by the multichannel filtering model for visual information 
processing in the rushed stages of human visual system. 
The canals are considered by a bank of Gabor filters that 
approximately homogeneously covers the spatial-frequency 
domain, and a methodical filter range pattern is proposed, which 
is founded on renovation of the input image from the filtered 
images. Texture patterns are obtained by exposing each filtered 
image by a convolution on kernel Gabor function to a non-linear 
transformation and computing a measure of magnitude [Figure 
33] or a phase image [Figure 34] responses in a carrier around 
each pixel. A mean square error clustering algorithm and a 
signal-to-noise ratio is then used to integrate the appropriates 
parameters in the kernel Gabor function for an optimum 
quantifying of the feature images and produce a segmentation. 
A simple method to include spatial information in the clustering 
process is proposed. The Tables 1 and 2 regrouped the diverse 
results acquired when changing the others degrees of liberty 
to estimate the appropriate values of parameters used yield in 
texture categories. [36,37]

Figure 34: Segmentation obtained into magnitude image response using 
a total of 8 Gabor filters tuned to fitting parameters previously searched.

Using the imaginary part of the Kernel Gabor function can 
provide more information on the texture of the retina image 
as well on the classification of cup and disc and other patterns 
whether at the level of the phase image or at the level of the 
magnitude image [Figures 35 and 36].

Discussion
Gabor filter banks for texture classification of the papilla 

and pattern analysis of the cup and the disc is automatically 
interesting because the main spatial-frequency components of 
dissimilar textures are different. An essential progress of the 
Gabor filter banks approach to texture analysis is that one can 
acquire immediate results in the phase space or Cartesian space 
of gray images in the filtered images as texture features. This 
simplicity is the direct result of decomposing the original image 
into several filtered images with different orientations and 
spatial frequency or different scale. The main issues involved 
in the Gabor filter banks approach to texture analysis are: - 
functional classification of the parameters and the number of 
parameters, - extraction of appropriate texture features from the 
convoluted images, - the liaison between parameters (dependent 
vs. independent), and integration of texture features from 
different parameters to yield segmentation.

Figure 35: Segmentation obtained into magnitude image response using 
a 8 imaginary part of kernel Gabor function tuned to fitting parameters 
previously searched.

Figure 36: Segmentation obtained into phase image response using a 
8 imaginary part of the Kernel Gabor function tuned to fitting parameters 
previously searched.

Different orientations, frequency and scale filtering parameters 
that are used in the proposed paper differ in their results to one 
or more of the above issues i.e. parameters give phase images or 
magnitudes images with more clarity and information. We use a 
bank of Gabor filters to describe the papilla and the vessels along 
different orientations and frequency. We show that the filter set 
forms an approximate basis for a wavelet transform, with the 
kernel Gabor function as the wavelet. We propose a systematic 
filter set selection pattern which is based on direct convolution of 
the input image with Gabor function along different orientations 
and spatial frequency F0 to determine the filtered magnitudes 
images and the filtered phase images. Texture discrimination is 
associated with differences in the attributes of these splotches 
in different regions. An adjustment approach is then used where 
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the attributes of the papilla are netted by texture features defined 
by a measure of magnitude image in a small Gaussian envelope 
around each pixel in the response image. This process generates 
a feature image corresponding to magnitude and phase filtered 
image [Figure 1]. The size of the Gaussian envelope for each 
response image is determined using the adjusted value of 
parameters ‘’a=1/50’’ and ‘’b=1/40’’ who controls the long of 
Gaussian envelope axis elliptic. 

Conclusion
 We have presented an unsupervised texture image segmentation 
that is a difficult task in image processing. A unique segmentation 
approach will certainly never be established to be applied 
to all classes of images. In this paper we have proposed an 
unsupervised segmentation approach to be applied in textured 
image segmentation, pointing to increase the performance of 
the mark of a set Gabor filters segmentation technique. Starting 
from a well-known algorithm, Gabor filters bank, we modified 
its standard use by an important perspective of our present work.

Experimental results on a set of various segmented images show 
better performance of the proposed method in terms of density 
of the segmented regions as compared to the others methods of 
segmentation. Based on experimental results, we have shown 
the superiority unsupervised segmentation approach called 
Gabor filters banks. Furthermore, the search of other optimal 
features to distinguish texture and the use of plunging window 
with a variable size are required to analyze the retinal image 
where the papilla is located, where the cup-disc is situated 
with a lack contrast, hence the necessity of an optimal method 
to diagnose the excavation of the optic nerve head, vessels 
and early glaucoma disease screening to help the doctor 
ophthalmologist through machine learning to detect this disease 
before its progression and that the patient has total blindness.
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