Finnish Diabetic Risk Score: A Tool for Predicting Risk of Undiagnosed Type 2 Diabetes Mellitus

Sheikh Mohammed Saleem1*, S. Muhammad Salim Khan1, Shah Sumaya Jan2

1Department of Community Medicine, Government Medical College, Srinagar, Jammu and Kashmir, India, 2SKIMS Medical College, Srinagar, Jammu and Kashmir, India

Abstract

Objectives: The objective of the study was to assess the performance of the Finnish Diabetic Risk Score (FINDRISC) questionnaire for detecting and predicting risk of type 2 Diabetes mellitus (T2DM) in patients attending a primary health centre. Materials and Methods: We conducted a cross-sectional study comprising 1530 adult participants, age (>20 yrs) attending Outpatient department of a primary health centre located at Harwan, district Srinagar without a diagnosis of T2DM. The risk of developing T2DM was assessed using the validated and widely used FINDRISC. Total Risk Score of each participant was analysed and compared. Results: Data on 1530 participants with unknown diabetes mellitus were analysed. 46% of participants were male, and 54% were females. About 55% of participants were literate, 20% were current smokers, 18% had a family history of diabetes mellitus, 15% had a family history of hypertension, and 48.03% of the study participants have FINDRISC score of less than 7, 28.69% of participants have FINDRISC score between 7-14. Only 3.07% participants have FINDRISC scores of >20. 12% of the participants had a moderate risk for type 2 diabetes of 17% to become diabetic in the next 10 years, and another 10.58% had a high or very high risk of 33-50% to become diabetic in the next 10 years. Conclusion: The FINDRISC questionnaire designed by Finnish diabetic association is a useful screening tool to identify unknown T2DM and estimates the probability of a person to develop diabetes within the next 10 years.

Keywords: Finnish diabetes risk score; Type 2 diabetes mellitus; Pre-diabetes; Screening; FINDRISC score in Kashmiris

Introduction

Diabetes mellitus (DM) affects around 8.3% of world’s adult population, and World health organization has predicted the total number of cases of DM to rise from 371 million in 2012 to 552 million in 2030 [1]. This increase in the cases of DM may be due to high prevalence and low incidence of the disease, the rising prevalence of overweight and obesity, lack of physical activity, and changes in the demographic characteristics of the population [2]. Among DM cases, more than 90% of patients have type 2 diabetes mellitus (T2DM), and over 50% of cases are undetected [1]. DM risk scores [3] is an easy, less time consuming, non-invasive, and cost effective approach to assess an individual’s risk of Undiagnosed T2DM and dysglycaemia.

In our study we have used Finnish Diabetes Risk Score (FINDRISC) which is one of the most frequently used instruments for assessing the risk of DM [4]. FINDRISC assesses whether an individual has Undiagnosed T2DM or dysglycaemia or the probability of developing T2DM during the following 10 years. However, to our knowledge; no studies have examined the validation of FINDRISC score for detection of UT2DM in Kashmiri population. We performed this study to evaluate the performance of FINDRISC score for screening of UT2DM and any dysglycaemia in a representative sample of the Kashmiri population living in Harwan Zone, district Srinagar.
history of elevated blood glucose, daily physical activity, and daily consumption of vegetables, fruit, and berries. Total Risk Score of each participant was analysed and compared. Score Lower than 7: Low: estimated 1 in 100 will develop disease. 7–11: slightly elevated: estimated 1 in 25 will develop disease. 12–14: Moderate: estimated 1 in 6 will develop disease. 15–20: High: estimated 1 in 3 will develop disease. Higher than 20: Very high: estimated 1 in 2 will develop disease.

Statistical analysis was done using SPSS statistical software v 20.0. Statistical methods included the t-test, one-way analysis of variance, and the chi-square test. Data was presented by mean ± SD.

Complete data on 1530 participants with unknown diabetes mellitus were available. Of these participants, 704 (46%) were male, Age (mean ± SD = 61.4 ± 6.2 years) and 826 (54%) were females, Age (Mean ± SD = 59.6±5.9). About 55% of participants were literate, 20% were current smokers, 18% had a family history of diabetes mellitus, 15% had a family history of hypertension and there was no significant difference in values for blood pressure among participants of both sexes [Table 1].

Table 1: Baseline characteristics of study participants

<table>
<thead>
<tr>
<th>Variables</th>
<th>Total</th>
<th>Men</th>
<th>Women</th>
<th>p-value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subjects %</td>
<td>1530</td>
<td>704</td>
<td>826</td>
<td></td>
</tr>
<tr>
<td>Age, Mean (SD)</td>
<td>60 (6)</td>
<td>61.4 (6.2)</td>
<td>59.6 (5.9)</td>
<td>0.14</td>
</tr>
<tr>
<td>Education % (n)</td>
<td>840 (54.9)</td>
<td>489 (58.2)</td>
<td>351 (41.8)</td>
<td><0.01*</td>
</tr>
<tr>
<td>Current Smoking % (n)</td>
<td>293 (19.1)</td>
<td>289 (41.05)</td>
<td>4 (0.48)</td>
<td><0.01*</td>
</tr>
<tr>
<td>Family History of Diabetes mellitus % (n)</td>
<td>276 (48.10)</td>
<td>141 (51.08)</td>
<td>135 (48.91)</td>
<td>0.03</td>
</tr>
<tr>
<td>Family history of hypertension % (n)</td>
<td>235 (15.35)</td>
<td>121 (51.48)</td>
<td>114 (48.51)</td>
<td><0.01*</td>
</tr>
<tr>
<td>Systolic Blood pressure, Mean (SD)</td>
<td>124 (6.9)</td>
<td>128 (15.8)</td>
<td>121 (17.1)</td>
<td><0.01*</td>
</tr>
<tr>
<td>Diastolic Blood pressure, Mean (SD)</td>
<td>77 (9.9)</td>
<td>79 (9.9)</td>
<td>75.8 (9.7)</td>
<td><0.01*</td>
</tr>
<tr>
<td>FINDRISC Score</td>
<td>11.45</td>
<td>11.10</td>
<td>12.18</td>
<td>(4.80)</td>
</tr>
</tbody>
</table>

1Systolic Blood pressure, Mean (SD) | 124 (6.9) | 128 (15.8) | 121 (17.1) | <0.01* |
| Diastolic Blood pressure, Mean (SD) | 77 (9.9) | 79 (9.9) | 75.8 (9.7) | <0.01* |
| FINDRISC Score | 11.45 | 11.10 | 12.18 | (4.80) | (4.77) | (4.80) |

1Data are presented as mean ± SD for continuous variables; 2 WILCOXON rank sum test P<0.05

Almost half of the study participants have FINDRISC score of less than 7, one third of participants have FINDRISC score between 7-14. Only 3.07% participants have FINDRISC scores of >20. The study sample characteristics are described in relation to FINDRISC categories in Table 2.

Distribution of the results of the FINDRISC questionnaire is shown in Figure 1. Twelve percent of the participants had a moderate risk for type 2 diabetes of 17% to become diabetic in the next 10 years, and another 10.58% had a high or very high risk of 33–50% to become diabetic in the next 10 years. Of the 1530 participants, 346 (22.61%) participants had a FINDRISC score of ≥ 12.

Discussion

In this study we report on Finnish Diabetes Risk Score for estimating the probability of a person to develop diabetes within the next 10 years. Use of such a scoring system is of great significance and could prove to be cost effective, reliable, valuable and easy to use screening tool for detecting risk.
of diabetes. In countries like India where there is a marked explosion of diabetes and over half of the cases remain undiagnosed, FINDRISC scoring system can be used by primary care physicians at a primary care setup in determining 10 year risk of developing DM.

The current study assessed the performance of the FINDRISC questionnaire, and clearly demonstrates that this scoring system can work reasonably well as screening tool, detecting undiagnosed T2DM in the general population. Findings in this study showed a positive association between the FINDRISC score and undiagnosed T2DM in the general population. Using the cut-off Score values of greater or equal to 14 in men and women, 11.24% (9.68-12.8), this screening tool had good performance in identifying undiagnosed T2DM. The results of our study were comparable with the results from earlier studies. Viitasalo et al. [5] reported a prevalence of FINDRISC ≥ 14 (12.9%) in the Finnair personnel, Gyberg et al. [6] in an online work-place survey in Sweden have found a prevalence of FINDRISC ≥ 15 in an online workplace survey in to be 8.4%. Another study from Bulgaria by Tankova et al. [7] among 2169 subjects demonstrated FINDRISC score ≥ 12 of 10.1% ± 3.4 in non-glucose tolerance group and 13.8 ± 4.3 in impaired fasting glycaemia group which is in accordance with results of our study. Franciosi [8] conducted a study on 1377 individuals and found diabetic risk score values showed a marked variation according to glucose metabolism categories, 8.7% +/- 3.0 in normo-glycaemic individuals, 9.5% +/- 3.1 in individuals with impaired fasting glucose, 9.9% +/- 3.3 in individuals with IGT, and 12.0% +/- 3.5 in individuals with type 2 diabetes. Studies have shown that T2DM is a major and an important independent risk factor for developing cardiovascular disease and death [9]. Therefore, early identification of individuals with undiagnosed T2DM and detecting individuals at risk for developing T2DM in near future is essential for early implementation of preventive measures, reducing economic costs and morbidity associated with diabetic complications [10]. The FINDRISC score was originally developed with the intention to use in prospective settings to detect high risk individuals for development of T2DM. We have used it in a cross-sectional setup for estimating risk of getting T2DM in the near future. The results of our study are in accordance with other studies using different validated risk scores [11-14]. Furthermore, different studies have used different cut off values of FINDRISC score to identify individuals at high risk. Saaristo et al. [15] in their study found 13% of study participants above the cut of value of 12, which is comparable to that of our study. T2DM is a disease with high prevalence and low incidence so its detection is often delayed and at the time of diagnosis advanced complications are frequently present. Hence, using FINDRISC score which is a simplified and valid questionnaire as a preliminary screening tool followed with more invasive and accurate diagnosis in primary care constitutes a cost effective and practical method with a potentially high national impact in terms of public health.

The applicability of FINDRISC scores may vary between populations, and therefore, these should be validated in each population beforehand. It is worth mentioning that there are several methodological differences between the several studies that have validated the FINDRISC questionnaire; modified or shortened versions have been used, in some studies the plasmatic glycaemia tests have been only performed in subjects with a particular score, and in other cases pre-diabetes or metabolic syndrome has been also considered as an outcome [16-19]. Therefore, the present study should be compared to these previously conducted studies with caution.

Limitations of the Study

First, the participants were drawn from a single primary healthcare Centre located at Harwan, district Srinagar and, thus, the results may not be applicable to the rest of Jammu and Kashmir state. Secondly, sample size was relatively small but findings were in accordance with other studies in different populations [20,21]. Thirdly, diagnosis of T2DM using biochemical markers were not done for patients with higher FINDRISC scores. Fourth, more respondents in our study were women, and this may partly be explained by behavioural habits, women are more likely to participate in completing questionnaires, they visit Health care providers more often, and usually they spend more time at home.

Conclusion

The FINDRISC questionnaire designed by Finnish diabetic association is a useful screening tool to identify unknown T2DM and estimates the probability of a person to develop diabetes within the next 10 years. The questionnaire is a reliable, valuable and easy to use screening tool which can be used in a primary care setup. The findings may help the health care professionals to substantiate the possible improvement in glucose metabolism and lifestyle changes, and better convince people at high risk of T2D to take action towards healthier lifestyle habits.

Conflict of Interest

All authors disclose that there was no conflict of interest.

References

3. Lee CM, Colagiuri S. Risk scores for diabetes prediction: the

